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Using a relation derived from the blob model we obtain an equation giving the 0 temperature of the polymers. 
This equation predicts for the star shaped polymers a decrease or an increase in their 0 temperature compared with 
the 0 temperature of the corresponding linear polymers. The value of the 0 temperature of star polymers is tightly 
related to their degree of branching. The predictions of this model are compared with experimental results. 0 1997 
Elsevier Science Ltd. 
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Inrroduction 

The theta temperature of a branched polymer has been 
found experimentally to be lower than the theta temperature 
of the corresponding linear polymer dissolved in the same 
solvent’-6. Candau et a1.7 have proposed a relation which 
predicts this decrease in the theta temperature of branched 
polymers. Here we give a relation, based on the blob 
theory’, which predicts the theta temperature of star 
polymers. A decrease in the theta temperature of the 
relatively low-branched star polymers is predicted, while 
this relation predicts an increase in the theta temperature for 
the highly branched star polymers, compared with the 
corresponding linear polymers. An experiment with a 17- 
arm star polystyrene gives a theta temperature in cyclo- 
hexane for this polymer, higher than the theta temperature 
of the linear polystyrene. 

Theory and procedure 

According to the thermal blob theory a macromolecular 
chain is divided into N/N, blobs where N is the number of 
statistical segments and N, is the number of statistical 
segments of which one blob consists, which corresponds to 
the temperature-dependent cut-off to separate Gaussian and 
excluded volume regimes. The following relation correlates 
the number of blobs to the reduced temperature 7 (7 = 1 - 
O/r) and to the molecular mass M of the chain’, 

N T2M 

N,=- ncuMo 
(1) 

where M. is the molecular mass per monomer and na is the 
adjustable parameter needed for quantitative comparison of 
the theory and experiment. The value of N, can be calcu- 
lated using the following equation proposed by Han” and 
which is based on a relation proposed by Farnoux et al.” 
and on the dynamic agreements of Weill and des Cloizeaux”: 

(y3= 4(1-v)(Z-v) 

11 (2v+l)(v+ 1) 
(2) 

In the above equation CX~ is the viscometric expansion factor 
and v the excluded volume index (3~ - 1 = a), where a is 
the exponent in the Mark-Houwink-Sakurada (MHS) 
equation. Knowing the viscometric expansion factor, the 
number of statistical segments and the excluded volume 
index of a chain dissolved in a given solvent we can calcu- 
late, from equation (2), the characteristic number N,. 

Knowing the value of N, for a polymer solvent system 
and the 0 temperature of this system from equation (1) we 
can calculate the adjustable parameter ncx. We have 
obtained na = 10 for a great number of polymer-good 
solvent systems’“. The same value is proposed by 
Vidakovic and Rondelez14. 

In this article we use equation (2) in order to obtain the 
value of N, of different star shaped polymers. For an 
homologous series of a star polymer (same number of 
branches but of different length) we,~~~ly the Stockmayer- 
Fixman-Burchard (SFB) equation -’ and we obtain the 
unperturbed dimension parameter Ke.. In the following we 
obtain the value of (Y? (ai = [q]/KoM”‘). The value of K@ 
permits us also to calculate the statistical segment length of 
the polymer A (Kuhn statistical segment) by the relation 

(3) 

where ML is the molecular mass per unit length. The value of 
the molecular mass of the statistical segment m, is obtained in 
the following (m, = AML). Dividing the molecular mass of 
each fraction by m, we obtain the number of statistical seg- 
ments N of which the chains of each fraction consist. 

In contrast to what we obtain with the linear polymers, the 
characteristic number N, is not the same for all the fractions 
of a star polymer; this number increases with increasing 
molecular mass of the fraction. Equation (2) gives also 
values for N, of a star polymer which are different from 
those of the corresponding linear polymer dissolved in the 
same solvent and in which the star and the linear polymer 
present the same solubility (same value of the index v). 

Having M = Nm,, from equation (1) we obtain 
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? ncuMo 

7 =zj& 
(4) 
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This equation allowed us to determine the theta temperature 
of different linear polymers dissolved in different good 
solvents. taking /Z(Y equal to IO”. 

Using now the above relation for an homologous series ot 
a star polymer and for the corresponding homologous her&\ 
of a linear polymer. both dissolved in the same solvent at the 
same temperature and presenting the same solubility in thi\ 
solvent (same exponent in the MHS equation) and accepting 
that we have the same adjustable parameter for the two 
types of polymer. we obtain 

Having 7 = I - O/T finally we obtain 

Let us try to give a physical meaning lo the above equation. 
The product Nrj?l,. that appears in this equation. give\ the 
molecular mass of the blob (N, is the number of statistical 
segments of which one blob consists and 111, is the molecular 
mass of one statistical segment). If now N;,,‘,,,lr,,,,,, 
NTll”~n\i,II we obtain from equation (5) O,,,, L” b),,,,. Daoud 
and Cotton’” predict that the blob of the branches of star 
polymers become gradually smaller when we approach the 
branch point of the molecules. This decrease can explain 
the above inequality and consequently it can also explain the 
decrease in the 0 temperature of a star polymer compared 
with the 8 temperature of the corresponding linear polymer. 
When we have Nr,,ar~l~,, ,‘,,. >Nrl,n/~~,ll,,. equation (5) give\ 
O,,,, > @I,,,. A molecular mass for the blob of the $tur 
polymer higher than the mass of the linear polymer can be 
predicted from the model of Boothroyd and Ball’J. Accord- 
ing to this model, the interior part of a star polymer is an 
impenetrable sphere that can be considered as one blob. 
Consequently in the case of highly branched star polymer\ 
we can accept that the mean value of the molecular mass ot 
the blobs is higher than the molecular mass of the blobs of 
the corresponding linear polymers and from equation (5) we 

obtain (*I,,,, > @J, ,,,. The choice of one or other model must 
depend on the number of branches of the star polymer and 
we expect that the @j temperature of a star polymer can be 
higher than the @I temperature of the corresponding linear 
polymer only when the former presents a high degree of 
branching. The same considerations are also valid for Equa- 
tion (4): a decrease in the molecular mass of the blob, N,ttt,. 
Icuds to an increase in 7’ or to a decrease in the 61 tempera- 
ture and vice versa. 

Kcwlt.\ 

Homologous series of linear and of 6-arm star poly- 
styrenes have been studied by Roovers and Bywaters.‘x in 
cyclohexane at 50°C. Using these viscometric results we 
obtained the values of 111, and N, of different fractions of the 
linear and star polymers (SFB and MHS representation, 
applications of equation (3) and equation (3)). In the 
following. applying equation (5) (with T = 323 and @I,,,, = 
X)7.5) we obtain the values of @),,,, of different fractions of 
the star polymer in cyclohexane. The obtained values are 
presented as open circles in Figure / (the temperature has 
been converted in to degrees Celsius). The filled circles in 
the hame figure show the experimentally determined theta 
temperatures of the fractions of the six-branch star 
polymers’.‘.‘. It is worth noting that the calculated values 
from equation (5) and the experimentally obtained values lie 
very close to each other. 

Homologous series of 3-arm and 6-arm star PS have been 
studied in toluene by viscometryh.5 and we use these results 
in order to obtain N,,,,, and m,,,,, and apply in the following 
equation (5). The parameters of linear PS in this solvent 
~~~~,I111 and N,,,,,) are easily obtained from viscometric results 
available in our laboratory. The theta temperature of the 
linear polymer in toluene has been found to be 137 K”: 
equation (4). with tm = IO gives 6) = I39 K17. In Figure 2 
we present the theta temperatures of fractions of %arm and 
h-arm star PS given by equation (5). We observe that the 
theta temperatures of all the fractions of these branched 
polymers are lower than the theta temperature of the lineal 
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Figure 2 Variation of the theta temperature as a function of molecular mass of 3-arm (01, 6-arm (0) and 12-arm (A) star PS in toluene calculated from 
equation (5). The dashed line indicates the theta temperature of the linear PS. 

Figure 3 Variation of the second virial coefficient as a function of the temperature of a 17-arm star PS in cyclohexane (the two types of symbols correspond to 
two independent experiments). 

polymer as when cyclohexane was used as solvent 
(Figure I). 

With the viscometric results of a series of 12-arm star PS6 
we have a different behaviour. Although for the low 
molecular mass fractions the theta temperature is lower than 
the theta temperature of the corresponding linear polymer, 
for the high molecular mass fractions equation (5) gives 
theta temperatures which are slightly higher than the theta 
temperature of the linear polymers (Figure 2). Let us 

indicate that for the 12-arm star PS, in the case of high 
molecular mass fractions, no decrease in the 0 temperature 
compared with the 0 temperature of the linear PS6 (33°C) is 
observed. We cannot calculate, using equation (S), the theta 
temperature of 12-arm star PS in cyclohexane, as we have 
done in the case of 6-arm star PS, because we do not have 
viscometric data in this solvent for this star polymer at a 
temperature higher than the theta temperature. 

With a fraction of an 18-arm star PS for which the 
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intrinsic viscosities in toluene and in a theta solvent are 
given”‘. we obtained nr, and N,. Subsequently we applied 
equation (5) to calculate a theta temperature equal to I78 K 
which is higher than the theta temperature of the linear PS 
(@,,, = 137 K). Theta temperatures higher than the theta 
temperature of the corresponding linear polymers have also 
been calculated using equation (5) for fractions of multi-arm 
and l&arm star polybutadienes dissolved in cyclo- 
hexane”.“. The higher @ temperature of these highly 
branched polymers compared with the @l temperature of the 
corresponding linear polymer in cyclohexane is expected 
because at room temperature the second virial coefticient of 
these star polymers is lower than the second virial 
coefficient of the linear polymer”. Consequently cyclo- 
hexane is a worse solvent at room temperature for the stat 
polymers and we must arrive at their C-J conditions at a 
temperature higher than the (*I conditions of the linear 
polymer”. 

In order to verify whether one can obtain experimentally 
a theta temperature with a branched polymer that is higher 
than the theta temperature of the corresponding linear 
polymer we have studied the thermal variation of the second 
virial coefficient of a 17-arm star PS. The molecular mass of 
this sample is equal to 270 000. The second virial coefficient 
was given directly from software controlling the apparatus 
(spectrogoniometer. model SEM RD. Sematech). As we can 
see in Figure 3 the theta temperature of this sample (A .‘ = 0) 
lies between 41 and 42°C while the theta temperature of the 
linear PS is equal to .34.5”C. Let us indicate here that Berry’ 
has also obtained experimentally a theta temperature with 

highly branched PS that was higher than the theta 
temperature of the linear PS. 
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